
Focusing proofs and logics for models of computation

Aleksandra Samonek (UCLouvain)

Keywords: proof theory, linear logic, focusing, computation, logic programming

Linear logic (LL) is particularly successful in expressing the abstract models of computational
processes. The completeness of focusing proofs was first shown for LL by [1] and with the
following basic principle:

computation = proof search.

In [1] Andreoli observed that the chronology of the computational process is well expressed
using the sequent calculus of G. Gentzen. Gentzen-style sequents can be used to easily formalize
the history of execution of a computational process during a certain time interval. A sequent
system describes the correct inferences in proofs. This description corresponds to allowed
process state transitions. Consider the following graph:

The point s1 represents the state of the computational process at the beginning of the time
interval. It corresponds to the root of the tree, or the conclusion of a sequent. s2 and s3 are
the nodes of the tree representing the intermediate states of the process, while s4 and s5 are
the leaves of the tree and represent the resulting states at the end of the time interval or the
hypotheses. A state is represented not by an atom (as would be default in classical logic), but
as a sequent (a multiset of formulae). Unordered multisets allow concurrent access to formulae
of the sequent.

However, the most troublesome issue with such Gentzen-style proof is that they proceed
very slowly, due to the number of redundant options which a search function needs to consider
before finding an appropriate form of the proof. Indded, proofs in a Gentzen-style sequent
calculus for LL (and other logics as well) can be redundant, meaning that two proofs can differ
syntactically although they are identical up to some irrelevant ordering or simplification of ap-
plication of inference rules (IRs). Consequently, the search procedure makes (computationally)
costly choices which turn out to be irrelevant.

Focusing proofs is one of the methods used to reduce this redundancy and consequently,
speed up the proof search. More specifically, focusing is a strategy in proof searching in which
the searching procedure alternates between two phases:

1. an inversion phase (when the invertible inference rules are applied exhaustively) and

2. a chaining phase (when a selected formula is decomposed as much as possible using
non-invertible rules).



Focusing proofs and logics for models of computation

In LL synchronous connectives are such that the right-introduction inference rules for
those connectives are (generally) not invertible, the opposite for asynchronous connectives.
In focusing proofs the synchronous/asynchronous classification is extended to atoms. This
assignment of positive (synchronous) bias or negative (asynchronous) bias is arbitrary and in-
fluences the shape and the number of focused proofs, but not the fact of whether a focused
proof for a given formula exists in general. For a variety of logics, LL among them, focusing is
complete and provides a foundation for developing logics into programming languages.

Various focusing proofs methods and results have been developed in proof theory and the-
oretical computer science. However, so far no implementation of focusing proofs to automated
theorem proving has been presented. In particular, [1] showed a first focused proof system for
a full logic (LLF ), which was complete wrt its logic and tractable. Then [2, 3] used Andreoli’s
completeness result to design and formalize certain logic programming languages. [4] developed
focusing proof systems for classical logic (LKT/LKQ/LKη). [5] developed LJQ which permits
the so called forward-chaining in proofs. [6] used both both forward chaining and backward
chaining in proofs for full INT (LKF ). [7] showed a modal proof of focalization via focaliza-
tion graphs. Finally, [8]: proposed a method for automatic generation of certain focused proof
systems via permutation graphs based on [7].

During this talk I will (i.) demostrate how a logic may be turned into a programming
language and (ii) how it can be used to design a focused proof system based on the result
in [1] and (iii.) discuss how this method of speeding up proof search relates to methods in
computer science for theorem proving optimization, like using neural networks for premise
selection (cf. [9]).

References

[1] J.-M. Andreoli, “Logic programming with focusing proofs in linear logic,” Journal of Logic and
Computation, vol. 2, no. 3, pp. 297–347, 1992.

[2] J.-M. Andreoli and R. Pareschi, “Linear objects:logical processes with built-in inheritance,” New
Generation Computing, vol. 9, no. 3-4, pp. 445–473, 1991.

[3] D. Miller, “A multiple-conclusion specification logic,” Theoretical Computer Science, vol. 165, no. 1,
pp. 201–232, 1996.

[4] V. Danos, J.-B. Joinet, and H. Schellinx, “The structure of exponentials: Uncovering the dynam-
ics of linear logic proofs,” in Kurt Gödel Colloquium on Computational Logic and Proof Theory,
pp. 159–171, Springer, 1993.

[5] H. Herbelin, Séquents qu’on calcule: de l’interprétation du calcul des séquents comme calcul de
lambda-termes et comme calcul de stratégies gagnantes. PhD thesis, Université Paris-Diderot-Paris
VII, 1995.

[6] C. Liang and D. Miller, “Focusing and polarization in linear, intuitionistic, and classical logics,”
Theoretical Computer Science, vol. 410, no. 46, pp. 4747–4768, 2009.

[7] D. Miller and A. Saurin, “From proofs to focused proofs: a modular proof of focalization in linear
logic,” in International Workshop on Computer Science Logic, pp. 405–419, Springer, 2007.

[8] V. Nigam, G. Reis, and L. Lima, “Towards the automated generation of focused proof systems,”
arXiv preprint arXiv:1511.04177, 2015.

[9] A. A. Alemi, F. Chollet, G. Irving, C. Szegedy, and J. Urban, eds., DeepMath - Deep Sequence
Models for Premise Selection, 2016.

2


